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Lecture 7

Logistic regression
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v Multivariate analysis
Model Outcome
Linear regression continuous
Poisson regression counts
Cox model survival
Logistic regression binomial

* Choice of the tool according to study, objectives and the
chosen variables

— Control of confounding
— Model building, prediction
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e Logistic regression

* Models the relationship between a set of variables x;
— dichotomous (smoking: yes/no)
— categorical (social class, ... )
— continuous (age, ...)

and
— dichotomous variable Y
* Dichotomous (binary) outcome most common situation in

biology and epidemiology

-> Thus, logistic regression is the most common study design
used in epidemiology
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e Logistic Regression (ctnd).....

* logistic regression estimates for a randomly selected
individual the probability that an event occurs (p) versus the
probability that the event does not occur (1-p)

* needs a yes/no outcome variable for each individual in the
data set (i.e. binary) = case-control study

* yes/no data does not follow a normal distribution
- logistic regression




e One way to model non-linear relations

* tranform x values to get a linear relation between x and y
(e.g. log(x), ¥, ...)

x* transformed
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x* = log(x)

 for interpretation do not forget: x = e¥*
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H Logistic regression (1)

Example:

Age and signs of coronary heart disease (CD) for 33 patients
Age CD Age CD Age CcD
22 0 40 0 54 0
23 0 41 1 55 1
24 0 46 0 58 1
27 0 47 0 60 1
28 0 48 0 60 0
30 0 49 1 62 1
30 0 49 0 65 1
32 0 50 1 67 1
33 0 51 0 7 1
35 1 51 1 77 1
38 0 52 0 81 1

What you see: age is continuous, signs of CD is binary (yes/no or 1/0)
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e How can we analyse these data?

* Comparison of the mean age of diseased and non-
diseased women

— Non-diseased: 38.6 years
— Diseased: 58.7 years (p<0.0001)

* Linear regression?
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u Dot-plot of the data
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H Logistic regression (2)

Accumulated data:
Prevalence (%) of signs of CD according to age group

Diseased
Age group #in group # %
20 -29 5 0 0
30-39 6 1 17
40 - 49 7 2 29
50 -59 7 4 57
60 - 69 5 4 80
70-79 2 2 100
80-89 1 1 100
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The logistic function (1)
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e The logistic function (3)

* Advantages of the logit
— Simple transformation of P(y|x)
— Linear relationship with x

— Can be continuous (Logit between - 0 to + OO)
— Known binomial distribution (P between 0 and 1)
— Directly related to the notion of odds of disease
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v Coefficients

* Ininterpreting coefficients we’re now thinking about a particular
case’s tendency toward some outcome

* The problem with probabilities is that they are non-linear

— Going from .10 to .20 doubles the probability, but going from
.80 to .90 only increases the probability somewhat

* With logistic regression we start to think about the odds

* Odds are just an alternative way of expressing the likelihood
(probability) of an event.

— Probability is the expected number of the event divided by the
total number of possible outcomes

— Odds are the expected number of the event divided by the
expected number of non-event occurrences.

* Expresses the likelihood of occurrence relative to likelihood
of non-occurrence
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e 0dds

* Let's begin with probability. Let's say that the probability of
success is .8, thus

-—p=.8
* Then the probability of failure is
—q=1-p=.2

* The odds of success are defined as
— odds(success) = p/q=.8/.2 =4,
— that is, the odds of success are 4 to 1.
* We can also define the odds of failure
— odds(failure) = q/p =.2/.8 = .25,
— that is, the odds of failure are 1 to 4.
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e Odds Ratio

* Next, let's compute the odds ratio by
* OR = odds(success)/odds(failure) = 4/.25 =16

e The interpretation of this odds ratio would be that the odds of
success are 16 times greater than for failure.

* Now if we had formed the odds ratio the other way around
with odds of failure in the numerator, we would have gotten

* OR = odds(failure)/odds(success) = .25/4 = .0625

* Here the interpretation is that the odds of failure are one-
sixteenth the odds of success.




e Logit

* Logit

P
logit=In
g (LPJ

— Natural log (e) of an odds
— Often called a log odds

* The logit scale is linear

* Logits are continuous and are centered on zero (kind of
like z-scores)

— p =0.50, odds = 1, then logit=0
— p =0.70, odds = 2.33, then logit = 0.85
— p =0.30, odds = .43, then logit =-0.85
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e Logit

* So conceptually putting things in our standard
regression form:

— Log odds = b, + b, X

* Now a one unit change in X leads to a b, change in the

log odds
* In terms of odds: odds(Y =1) = ™"
by+b X
* In terms of probability: Pr(Y =1) = lieb“le

* Thus the logit, odds and probability are different ways
of expressing the same thing
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e Interpretation of 3 (1)

Exposure (x)
Disease (y) Yes No
Yes P(y‘x =1) P(y‘x =0)
No 1= P(ylx=1) 1= P(yx=0)
e(x+ﬂ ;
L - e“+BX Oddsd\e =" OR= e” ¢
1-P Odds,, = e° In(OR) = f8
_?f_ - B @ @ e LB

e Interpretation of 3 (2)

* P =increase in log-odds for a one unit increase in x

* Test of the hypothesis that =0 (Wald test)

ST
Variance(3)

* Interval testing 95% C| = oF+1-96SE 5)
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e Example

* Age (<55 and 55+ years) and risk of developing
coronary heart disease (CD)

CcD 55+ (1) < 55 (0)
Present (1) 21 22
Absent (0) 6 51

Odds of disease among exposed

Odds ratio =
Odds of disease among unexposed

1
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i * Results of fitting Logistic Regression Model

In(1pp)=a+[51 x Age = -0.841+2.094 x Age

Coefficient SE Coeff/SE
Age 2.094 0.529 3.96
Constant -0.841 0.255 -3.30
Log-odds = 2.094

OR=¢e?"* = g1

WaldTestforeffectof age=3.96" withldf, p<0.05
95%CI: e(2.094‘|_'1.96X0.529) — 29,229
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e Fitting equation to the data

* Linear regression: Least squares
* Logistic regression: Maximum likelihood

e Likelihood function

— Estimates parameters o. and 3 with property that
likelihood (probability) of observed data is higher than for
any other values

— Practically easier to work with log-likelihood

L®) =i ®)]= Y by o)L 1) ol )

W
% S i o = ORI o ; BRI RY
g o b Drnviramir i i s G b [+ . sl
m@" SERT .ﬂ ﬁ DM E ?::‘ * = [t S TR T
AT Frwt - R s (e

e Maximum likelihood

* Iterative computing
— Choice of an arbitrary value for the coefficients (usually 0)
— Computing of log-likelihood
— Variation of coefficients’ values
— Reiteration until maximisation (plateau)

* Results
— Maximum Likelihood Estimates (MLE) for oc and 3
— Estimates of P(y) for a given value of x




e Multiple logistic regression

* More than one independent variable
— Dichotomous, ordinal, nominal, continuous ...

P
In[1-Pj:a+B1x1 + BXp + o BiX;

* Interpretation of 3,

— Increase in log-odds for a one unit increase in x; with all the
other x;s constant

— Measures association between x; and log-odds adjusted for
all other x;
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v Multiple logistic regression

* Effect modification

— Can be modelled by including interaction terms

In[1PPj:q+B1x1+ B,X, +B;X, x X,




e Statistical testing

* Question

— Does a model which includes a given independent variable
provide more information about the dependent variable
than the model without this variable?

* Three tests
— Likelihood ratio statistic (LRS)
— Wald test
— Score test

78 T g ye—
v Likelihood ratio statistic

* Compares two nested models
Log(odds) = o + Byx; + Bo%, + B3X, (model 1)
Log(odds) = a + B;x, + B,X, (model 2)

* LR statistic
-2 log (likelihood model 2 / likelihood model 1) =
-2 log (likelihood model 2) minus -2log (likelihood model 1)

LR statistic is a % with DF = number of extra parameters
in model
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e Example

P Probability for cardiac arrest
Exc 1= lack of exercise, O = exercise
Smk 1= smokers, 0= non-smokers

In[%j:owm Exc + B, Smk

~0.7102 + 1.0047 Exc +0.7005 Smk
(SE0.2614) (SE0.2654)

OR for lack of exercise =e" ™" = 2.73 (adjusted for smoking)
95% CI — e(1.0047 +1.96 x 0.2614) — 1.64 to 4.56
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v Interaction

* |s there an interactive effect between smoking and exercise?

|“[LPJ=G+|31EXC+ B, Smk+ B3 SmkxExc

* Product term b, =-0.4604 (SE 0.5332)

Wald test = 0.75 (1df)
-2log(L) = 342.092 with interaction term
= 342.836 without interaction term

—> LR statistic = 0.74 (1df), p = 0.39
= No evidence of any interaction




fv Model fit

* The Goodness-of-fit statistics helps you to determine
whether the model adequately describes the data

e Calculating the deviance of a model
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u Coding of variables (1)

* Dichotomous variables:yes=1,no0=0
e Continuous variables
— Increase in OR for a one unit change in exposure variable

— Logistic model is multiplicative =
OR increases exponentially with x

 If OR = 2 for a one unit change in exposure and x
increases from2to5:0R =2x2x2=23=8




e Continuous variable?

* Relationship between SBP>160 mmHg and body weight

* Introduce BW as a continuous variable?

— Code weight as single variable, eg. 3 equal classes:
40-60 kg =0, 60-80 kg =1, 80-100 kg = 2

BW Cases Controls OR
0 20 40 1.0
1 22 30 1.5 1.5~ 2.2
2 12 11 2.2
_?; - ﬁ @ v @ e BT
u Coding of variables (2)

* Nominal variables or ordinal with unequal classes:
— Tobacco smoked: no=0, grey=1, brown=2, blond=3

— Model assumes that OR for blond tobacco
= OR for no tobacco?

— Use indicator variables (dummy variables)
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®

Type of tobacco

Indicator variables

Tobacco Dummy variables

consumption Dark Light Both
Dark 1 0 0
Light 0 1 0
Both 0 0 1
None 0 0 0

* Neutralises artificial hierarchy between classes in the variable

"type of tobacco"
* No assumptions made

* 3variables (3 df) in model using the same reference

* OR for each type of tobacco adjusted for the others in reference

to non-smoking
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Assumptions

<o

Sample should be large enough to
populate categorical predictors. Limited

Sample Size . .
cases in each category may result in
failure to converge
Cases that are strongly incorrectly
Outliers predicted may have been poorly explained
by the model and misclassified
Data observations should not be related
Independence .
i.e. one respondent per dataset, not
of Errors

repeated measures — overdispersion

Independent variables are highly inter-
correlated (continuous) or strongly related
to each other (categorical)

Multicollinearity

Use crosstabs at variable
selection stage to identify
low populated cells, may
result in recoding

Identify cases through
classification table and
residuals

Easy to avoid if the data
collection has been
conducted properly

Use collinearity diagnostics in
linear regression model and
test high tolerance values
using chi-square or
correlation

Does not assume normal distribution of predictor variables — very useful!
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i . Multicollinearity

* |t occurs when one or more independent variables are highly
correlated (i.e. not independent!)

* It tends to reduce or negate the influential effect of either
predictor and can also have cumulating effects on the rest of
the model

* |t must be prevented at all costs and is more common than
you might think: income, education, social class, age, house
ownership, political party affiliation...
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